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The development of in silico and in vitro tools to estimate or predict the passive human skin permeation
and distribution of new chemical entities, useful in dermal drug delivery, in absorption studies of toxic
compounds, and in the cosmetics industry, is presented. In vitro permeation parameters were measured
using the artificial membrane PAMPA-skin. The Volsurf approach was then applied to extract pertinent
descriptors from molecular interaction fields characterizing the molecular structure of tested compounds.
Two useful three-dimensional solvatochromic models able to predict PAMPA permeation parameters directly
from the molecular structure were obtained using the partial least squares analysis. The models also provide
valuable information to understand the link between physicochemical and structural properties of tested
compounds and their interactions with the artificial membrane PAMPA-skin and can be useful to rapidly
estimate their permeation through the human skin.

Introduction

The development of a new artificial membrane (PAMPAa-
skin) for the fast determination of passive human skin perme-
ation has recently been presented.1 The good correlation obtained
between permeability coefficients determined through human
skin (logKp) and those determined through PAMPA-skin (log
Pe) and (for a limited set of compounds) between stratum
corneum (SC)/water partition coefficient (logPsc) values and
the PAMPA-skin membrane retention proved that the artificial
membrane can mimic the main barrier properties of SC.

The transport of permeants through this artificial membrane
in terms of structure-permeability relationships was investigated
in this work. Indeed QSAR models will better identify the most
important physicochemical and structural properties of tested
compounds affecting their interactions with PAMPA-skin and
thus also offer fast estimations of their behavior on human skin.
Accordingly, the development of three-dimensional (3D) sol-
vatochromic models for the permeation of compounds through
the artificial membrane PAMPA-skin are presented in this work
using an extended set of 69 compounds. The solvatochromic
descriptors were extracted from five molecular interaction fields
(MIFs) using the Volsurf2 approach and then correlated to the
experimental parameters determined with PAMPA-skin.

Predicting Skin Permeability. The assessment of a global
predictive model requires, besides consistent and reliable data,
that the process to be modeled occurs with the same mechanism
for all tested compounds. It is well-known that the major
determinant of percutaneous transport rate, especially for
hydrophobic molecules, is the passive diffusion through the lipid
matrix between the corneocytes.3 Interestingly it was recently

found that passive diffusion mechanisms may also control the
permeation of relatively hydrophilic solutes (-1 < log Poct <
0).4 Furthermore, the limited experimental permeation data for
polar compounds do not allow a systematic research focusing
upon the commonly referred porous/polar pathway.5,6 In effect,
most of the permeation data that have been analyzed derive from
the Flynn database7 and include a very limited number of polar
solutes.

As shown above, it is reasonable to believe that the passive
diffusion pathway through the SC controls the permeation of
most compounds whose permeation through human skin has
been experimentally determined.

Many quantitative structure-permeation relationship (QSPeR)
models have been developed by researchers to model passive
percutaneous penetration of exogenous chemicals.8,9 The most
popular predictive model is the equation proposed by Potts and
Guy,3 derived from the octanol-water partition coefficient (Poct)
and the molecular weight to describe the penetration of
compounds through the skin. Different approaches based on
electrotopological and steric descriptors8,10and other theoretical
descriptors11 are reported in the literature.

Solvatochromic analyses (linear solvation energy relationships
(LSERs)) have also been widely used in correlations with
biological, chemical, and physical properties involving solute-
solvent interactions for a large number of chemicals.12 The
general form of the LSER equation includes as independent
variables a cavity/bulk term, a polarizability term, and a
hydrogen bond term(s). Abraham and Martins13 recently pro-
posed a fairly good permeation model for 119 solutes based on
the general linear free-energy relationship (LFER)

whereKp is the human skin permeability coefficient,E is the
solute excess molar refractivity,Sis the dipolarity/polarizability,
A and B are the hydrogen-bond acceptor and donor activity,
respectively, andV is the molecular volume. Although predictive
models have been developed, the use of two-dimensional
descriptors both in QSPeRs and in LSER analysis do not take
into account the 3D aspects of molecular structures, thus limiting
the development of more realistic models especially for flexible
molecules.
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The calculation of molecular properties from 3D MIFs has
generated a novel approach to correlate 3D molecular structures
with pharmacokinetic and physicochemical properties.2 Re-
cently, a partial least squares (PLS) analysis based on 3D
molecular descriptors calculated with Volsurf procedure was
reported to study skin permeation of naproxen derivatives.14

Although this study offers a valuable tool to derive significant,
internally predictive quantitative models for structure-perme-
ation relationships, the interpretation in terms of intermolecular
interactions was limited due to the congeneric nature of the
series explored.

In the present study, two 3D solvatochromic models were
developed for the prediction of compound permeation and
distribution through PAMPA-skin membrane using molecular
descriptors calculated with Volsurf from five MIFs: the
hydrophobic part of the molecular lipophilicity potential (ML-
Pho),15 the acceptor and donor molecular hydrogen-bonding
potential (MHBPs),16 and the GRID “DRY” and “H2O” fields.17

Results and Discussion
Classification of Permeants.In PAMPA-skin, compounds

were grouped according to experimental values of membrane
retention (%R) and the permeation parameter (%CA(t)/CD(0)).
It was shown that compounds highly permeable through human
skin ((logKp g -6) can be differentiated by PAMPA-skin into
two groups, namely, compounds trapped in the artificial
membrane and compounds not retained within the membrane,
while compounds with low permeability (logKp < -6) present
no membrane retention and lowCA(t)/CD(0) values.1

As a consequence, three classes of compounds were formed
in accordance with their experimental values ofR and CA(t)/
CD(0). Accordingly, compounds withCA(t)/CD(0) < 20% and
negligible %R were assigned to class (I), compounds withCA-
(t)/CD(0) > 20% andR < 23% to class (II) and compounds
with R > 23% to class (III).

Permeation through PAMPA-Skin for the Additional
Dataset. To develop a comprehensive model, a set of 38
compounds in addition to the set (31 compounds) previously
published1 was selected for permeation measurements through
PAMPA-skin artificial membrane. Additional compounds were
selected according to their chemical diversity and available
human skin permeability coefficient values (logKp). Permeation
experiments were thus carried out for these compounds on
PAMPA-skin using the protocol previously described (see Table
1 for experimental results). Figure 1 shows the relationship
between membrane retentionR and the permeation parameter
CA(t)/CD(0) for the 38 tested compounds together with the
previous 31 compounds with a color scheme representing the
three classes described above. For compounds belonging to
classes II and III, there is a negative correlation between
membrane retention (R) and permeation (CA(t)/CD(0)), meaning
that for these compounds, the membrane behaves like a trap.

Eight compounds (atenolol, dibucaine, diethylaniline imi-
pramine, sulfacarbamide, sulfacetamide sulfanilamide, and tri-
fluoroperazine) did not permeate the membrane after a 7 h
incubation time (%CA(t)/CD(0) < 1) and, therefore, it was not
possible to determine the effective permeability coefficient (log
Pe) for these chemicals.

Permeability coefficients determined through PAMPA-skin
(log Pe) were then plotted against the available permeability
coefficient values determined through human skin: the good
correlations obtained between logPe and logKp for the extended
set confirm the efficacy of the artificial membrane PAMPA-
skin for the fast prediction of compounds’ permeation through
human skin (Figure 2).

Permeation Described by logPoct and Molecular Weight.
The most popular predictive model of skin permeation is the
equation proposed by Potts and Guy3 derived from the octanol-
water partition coefficient (Poct) and molecular weight (MW).
Multiple regression analysis for human skin permeability
coefficient values (logKp) and for effective permeability
coefficients (logPe) determined through PAMPA-skin were
done for tested compounds based on the descriptors proposed
by Potts and Guy. The analysis of the coefficients in eqs 2 and
3 shows that the permeation of solutes through human skin and
through PAMPA-skin are similarly influenced by MW and log
Poct, although the latter seems to have more importance in the
description of logKp. So, the permeation of a molecule through
PAMPA-skin membrane, in analogy to SC permeation, increases
as its lipophilicity increases, while as the molecule becomes
bigger, its diffusion through the membrane is reduced.

A multiple regression analysis was then performed for log
Pe using the extended data set. The total set of 69 compounds
was reduced to 61 compounds because no logPe was measured
for eight compounds (see above). A first investigation of the
predictive residual plot revealed that spironolactone was not well
predicted. After the removal of this outlier, the model demon-
strated a good predictivity (q2 ) 0.72) and confirmed that log
Poct and MW are pertinent descriptors to predict the permeation
of compounds through PAMPA-skin artificial membranes

3D Solvatochromic Model for the Quantitative Determi-
nation of log Pe. Although log Poct and MW are successful
descriptors of some permeation processes, it might be advanta-
geous to describe the transport of permeants through the
membranes in terms of their pure physicochemical properties.
In particular, partitioning coefficients in then-octanol/water
biphasic system do not fully express the capacity of solutes to
perform hydrophilic interactions with the skin. Indeed the
balance between hydrophilic interactions revealed by the log
Poct may largely differ from the balance of interactions with
the intercellular components of skin as already demonstrated
for partition coefficients measured in other biphasic systems.18-20

A multiple regression analysis relating human skin permeability
coefficients to physicochemical parameters independent of
organic-phase partition coefficients has been reported using a
set of 37 compounds consisting mainly of phenol derivatives
and alkyl alcohols.20 The study demonstrated that the transport
of permeants across the SC was mainly controlled by the
molecular size and water hydrogen bond activity.

A PLS model was then developed for the 61 compounds using
the effective permeability coefficient (logPe) values as depend-
ent variable (Y) and 3D solvatochromic descriptors as matrix
X. I-MLPho, I-DRY, S, and G molecular descriptors being poorly
related with logPe were eliminated in the study. The predictive
ability of the models was assessed using the “leave-one-out”
cross validation procedure.

The inspection of the predictive residual plots showed four
compounds not well predicted (outliers): antipyrine, caffeine,
sulfabenzamide, and sulfadiazine. For sulfabenzamide and

log Kp ) 0.77 logPoct - 0.0073MW- 5.98

n ) 38; r2 ) 0.81;s ) 0.42;q2 ) 0.77 (2)

log Pe ) 0.47 logPoct - 0.0050MW- 4.58

n ) 38; r2 ) 0.73;s ) 0.33;q2 ) 0.67 (3)

log Pe ) 0.45 logPoct - 0.0052MW- 4.50

n ) 60; r2 ) 0.75;s ) 0.33;q2 ) 0.72 (4)
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sulfadiazine, a poor parametrization of the sulfamide group is
suspected. Finally, for antipyrine and caffeine, further investiga-
tions are in progress to better understand their poor predictions.

After the removal of the outliers, the PLS statistical inter-
pretation for the solvatochromic model led to a two-component
model, which explained 80% of the total variance of the Y

matrix. The plot of experimental versus predicted logPe values
is shown in Figure 3. The predictivity of the model (q2 ) 0.74)
is comparable to that obtained using logPoct and MW descriptors
(q2 ) 0.72, eq 4), suggesting that the 3D solvatochromic model
provides a good quantitative determination of PAMPA-skin
permeability coefficients.

Table 1. MW, Lipophilicity Values in Octanol-Water System, logPoct, Permeability Coefficients Obtained through Human Skin (logKp), Membrane
Retention (R), CA(t)/CD(0), and Effective Permeability Coefficient (logPe) Values Obtained after a 7 hIncubation Time Using the PAMPA-skin
membrane (70% Silicone-30% IPM)a

cmpd MW logPoct
b log Kp

27 R (%) CA(t)/CD(0)(%) logPe

Original Set
2-amino-4-nitrophenol 154.1 1.18c -6.62 <1 18.2( 0.8 -4.84( 0.05
2-naphthol 144.2 2.70 -5.11 20.1( 1.1 36.5( 0.7 -4.19( 0.03
2-nitro-p-phenylendiamine 153.1 0.53d -6.86 <1 17.4( 0.5 -4.94( 0.02
4-bromophenol 173.0 2.59 -5.00 10.9( 0.9 44.1( 0.8 -3.90( 0.08
4-chlorophenol 128.6 2.39 -5.00 16.8( 0.5 39.4( 0.8 -4.10( 0.06
4-ethylphenol 122.2 2.47 -5.01 13.6( 2.3 41.6( 1.7 -4.05( 0.08
4-nitrophenol 139.1 1.91 -5.81 4.6( 2.6 39.9( 0.9 -4.32( 0.06
atrazine 215.7 2.61 -5.56 13.5( 4.8 38.8( 0.6 -4.21( 0.05
benzyl nicotinate 213.2 2.40 -5.35 40.6( 1.6 26.0( 1.0 -4.26( 0.02
caffeine 194.2 -0.07 -7.5628 <1 4.3( 0.2 -5.63( 0.02
antipyrine 188.2 0.38 -7.74 <1 1.2( 0.5 -6.20( 0.17
corticosterone 346.5 1.94 -7.0828 <1 13.6( 0.1 -5.06( 0.01
dexamethasone 392.5 2.01 -7.7528 <1 3.2( 0.4 -5.75( 0.05
diclofenac 296.2 4.51e -5.30 4.0 11.0( 1.9 -4.33( 0.11
ephedrine 165.2 0.93 -5.75 <1 21.8( 4.3 -4.81( 0.12
hydrocortisone 362.5 1.61 -7.1929 <1 2.2( 0.4 -5.94( 0.07
indomethacin 257.8 4.27 -5.39 52.8( 5.3 21.3( 2.7 -4.20( 0.08
isoquinolina 129.2 2.08 -5.33 7.3( 4.1 44.5( 1.5 -4.05( 0.04
ketoprofen 254.3 3.12 -4.70 12.1( 1.9 38.5( 0.8 -4.25( 0.01
lidocaine 234.3 2.26 -5.3230 9.7( 3.3 36.8( 1.0 -4.35( 0.03
methyl nicotinate 137.1 0.87 -6.04 10.7( 0.4 37.2( 1.0 -4.32( 0.06
naproxene 230.3 3.34 -4.97 23.1( 3.3 36.2( 1.2 -4.11( 0.11
nicotine 162.2 1.17 -5.26 4.1( 1.1 30.2( 4.9 -4.58( 0.12
phenobarbital 232.2 1.47 -6.90 <1 11.7( 0.4 -5.15( 0.02
phenol 94.1 1.46 -5.64 <1 46.7( 0.6 -4.14( 0.03
piroxicam 331.3 3.06 -6.02 7.2( 0.9 37.7( 0.6 -4.35( 0.02
progesterone 314.5 3.87 -5.0829 73.5( 2.0 8.6( 0.6 -4.56( 0.06
resorcinol 110.1 0.80 -7.18 <1 4.4( 0.8 -5.62( 0.08
salycilic acid 138.1 2.26 -5.45 5.7( 1.2 43.1( 1.6 -4.16( 0.02
testosterone 288.4 3.32 -5.8331 9.2( 1.6 42.9( 1.0 -4.11( 0.04
thymol 150.2 3.30 -4.83 66.2( 3.7 13.9( 2.1 -4.34( 0.06

Extended Set
1-chloro-2-nitrobenzene 157.6 2.24 45.7( 5.9 24.2( 1.8 4.05( 0.07
2,4,6-tricholorophenol 197.4 3.69 -4.78 75.0( 4.8 10.3( 3.2 -4.33( 0.15
2-amino-naphtalene 143.2 2.28 18.2( 2.4 36.4( 2.6 -4.23( 0.10
3,4-xylenol 122.2 2.23 -5 11.1( 6.0 41.2( 3.5 -4.16( 0.05
4-phenylbutyric acid 164.2 2.42 11.3( 2.9 42.6( 2.6 3.87( 0.11
5-phenylvaleric acid 178.3 2.85f 19.6( 2.3 38.0( 1.9 -4.10( 0.10
acridine 179.2 3.40 56.5( 2.1 17.4( 1.2 -4.37( 0.0
atenolol 266.4 0.22e <1 <1
benzidine 184.3 1.34 3.8( 2.3 35.0( 0.6 -4.46( 0.0
benzoic acid 122.1 1.87 -5.08 <1 44.7( 2.9 -4.21( 0.12
betamethasone 392.5 2.01 -7.17 <1 2.8( 0.7 -5.84( 0.14
butyl-p-aminobenzoic acid 193.2 2.87 -5.14 39.4( 0.6 25.7( 1.0 -4.30( 0.05
diazepam 284.8 2.92f 24.6( 3.6 33.1( 1.5 -4.26( 0.02
dibucaine 343.5 4.40 82.8( 7.9 <1
dienestrol 266.4 4.50c 78.1( 0.1 11.4( 2.0 -4.53( 0.35
diethylaniline 149.3 3.31 84.3( 9.6 <1
ethyl-p-aminobenzoic acid 165.2 1.86 -5.27 2.9( 0.4 42.6( 1.0 -4.25( 0.03
flurbiprofen 244.3 3.99e 67.6( 1.2 14.6( 0.6 -4.21( 0.0
imipramine 280.4 4.39e 69.1( 11.0 <1
o-cresol 108.1 1.94 -5.36 6.8( 1.8 43.4( 1.5 -4.18( 0.03
oxazepam 286.7 2.24 <1 22.0( 1.0 -4.64( 0.03
perphenazine 404.0 4.2 25.2( 4.6 24.3( 2.7 -4.56( 0.0
phenylacetic acid 136.2 1.41 <1 33.2( 0.7 -4.54( 0.0
phenylheptanoic acid 206.3 3.63 41.6( 7.8 22.0( 4.8 -4.25( 0.12
prednisone 358.5 1.46 <1 1.7( 0.3 -6.04( 0.10
propranolol 259.4 3.48e 17.7( 1.8 36.1( 2.5 -4.25( 0.08
pyridine 79.1 0.65 12.3( 6.5 35.6( 3.7 -4.35( 0.06
spirolactone 416.6 2.26 20.9( 6.6 32.7( 4.3 -4.33( 0.07
sulfabenzamide 276.3 1.46f <1 4.1( 0.6 -5.65( 0.07
sulfacarbamide 229.3 -1.1 <1 <1
sulfacetamide 214.3 -0.96 <1 <1
sulfadiazine 250.3 -0.12e <1 1.2( 0.4 -6.20( 0.14
sulfadimethoxine 310.4 1.63 <1 6.6( 0.3 -5.25( 0.02
sulfanilamide 172.2 -0.62 <1 <1
tolbutamide 270.4 2.34 <1 42.3( 4.6 -4.29( 0.15
triamcinolone 394.5 1.16 <1 1.2( 0.5 -6.24( 0.21
trifluoroperazine 407.5 5.03 78.2( 7.0 <1
warfarine 308.4 3.54e 14.9( 5.4 37.8( 2.8 -4.24( 0.02

a Permeability coefficients (Kp, Pe) are expressed in [cm/s].b From ref 32.c Values calculated using CLOGP version 4.91 (Daylight Chemical Information
System, Inc., Irvine, CA, 2005).d From ref 33.e From ref 24.f From A. Galland, 2003, personal communication.
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Figure 4 shows the PLS coefficient plot of the model for the
first two latent variables (LVs). The molecular descriptors
positively correlated with the logPe are those related to
dipolarity/dipolarisability (V-DRY), hydrophobicity (V-MLPho),
and localized hydrophilic regions (I-MHBPac, I-MHBPdo), while
those negatively affecting the permeation through the membrane
are those describing hydrophilic interactions (V-MHBPac, V-
MHBPdo) and molecular volume and shape (V, R). So, according
to the model, the permeability through PAMPA-skin membrane
is bigger for small and hydrophobic molecules presenting
localized hydrophilic regions.

Discriminant-Analysis PLS Model. A discriminant PLS
solvatochromic model using experimental values of membrane
retention (%R) and permeation parameter %CA(t)/CD(0) was
then developed for the total set of 65 compounds (after the
removal of the four outliers: antipyrine, caffeine, sulfabenza-
mide, and sulfadiazine) using 68 descriptors extracted with
Volsurf from the MIFs previously described (X data matrix).
The three classes representing the experimental values of %R
and %CA(t)/CD(0) were organized in a Y matrix, the DA-PLS
analysis gave a two-component model. Figure 5 shows the score
plot obtained from the first two LVs. The first LV discriminates
compounds with poor permeation and negligible membrane
retention (class I) from the others (classes II and III), while the
second LV separates relatively well compounds from class II
and compounds from class III.

Figure 6 shows the loading plot of the first LV versus the
second LV. It is important to recall that this plot represents the
original variables in the space of the LVs. If the angle formed
by two variables in the plot respect to the interception of axis
is small it means that they contain similar information, for

Figure 1. Membrane retention (%R) and amount of compounds found
in the acceptor compartment after 7 h incubation time (%CA(t)/CD(0))
using 70% silicone-30% IPM membrane. Compounds are colored
according to membrane retention (R) and the permeation parameter
(CA(t)/CD(0) values (see text for details), namely, low permeants (gray
circles, class I), high permeants (dark circles, class II), and permeants
with high membrane retention (open circles, class III).

Figure 2. Correlation between effective permeability coefficients log
Pe determined through 70% silicone-30% IPM membrane and human
skin permeability coefficient logKp for the extended set. The line was
obtained by the following linear regression equation: logKp ) 1.34
(( 0.11) logPe + 0.36 (( 0.49); (n ) 38; r2 ) 0.82; s ) 0.4; F )
158).

Figure 3. Plot of predicted vs experimental effective permeability
coefficient (logPe) using the PLS 3D solvatochromic model (r2 ) 0.80,
q2 ) 0.74,n ) 57).

Figure 4. PLS coefficient plot for the two LVs calculated with the
3D solvatochromic model for the prediction of logPe.

Figure 5. Discriminant analysis PLS score plot. Palmitic acid,
arachidonic acid, red acid 35, and yellow acid 1 are represented with
crosses (X). See Figure 1 for other color codes.

Figure 6. Discriminant analysis PLS loading plot of the extended set.
Molecular descriptors are represented as gray triangles and dependent
variables (Y) as black squares.
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example, an angle of 90° denotes that the variables are
independent of each other, while an angle of 180° indicates that
variables are inversely correlated to each other. The compounds
characterized by low permeation through the artificial membrane
(class I) are mainly influenced by polar descriptors (V-MHBPac,
V-MHBPdo). For example, Figure 7 illustrates the volumes of
H-bond acceptor and donor regions (V-MHBPac, V-MHBPdo)
calculated at 0.05 potential level for the low permeant hydro-
cortisone. As a result, the presence of H-bonding donor acid
groups and H-bonding acceptor basic groups in the compounds
decreases their permeation through the artificial membrane. An
inverse relationship was also found between hydrogen bond
activity and skin permeability,13,20 suggesting that hydrophilic
chemicals diffuse slowly through the SC.

Conversely, high permeants through PAMPA-skin membrane
(class II) are mostly correlated with hydrophobic (I-MLPho),
donor-hydrophilic (I-MHBPdo), and acceptor-hydrophilic (I-
MHBPac) integy moment descriptors. Moreover, the second LV
in the loading plot shows that these compounds are also
characterized by low molecular size and shape descriptors (R,
V, S, G). Integy moments express the unbalance between the
center of mass of a molecule and the barycentre of hydrophobic
or hydrophilic regions around it. When the integy moment is
high, there is a clear concentration of hydrophobic or hydrated
regions in only one part of the molecule. Therefore, molecules
that highly permeate the membrane present localized hydro-
phobic and hydrophilic regions. Figure 8 shows the MHBP and
MLPho molecular fields of 5-phenylvaleric acid, a molecule that
easily permeates the artificial membrane. Acceptor H-bonds (V-
MHBPac) and H-bond (V-MHBPdo) volumes calculated at the

0.05 potential level are represented, respectively, in green and
blue, while the volume of hydrophobic region (V-MLPho),
calculated at the 0.5 potential level, is represented in yellow.
The presence of localized hydrophobic and hydrophilic regions
is clearly represented by those molecular fields. Thus, although
the presence of polar groups negatively affects the overall
permeation through the membrane, the asymmetric distribution
of these moieties provides a positive contribution to the
permeability. The presence of isopropyl myristate (IPM) in the
artificial membrane presenting a localized hydrophilic (basic)
moiety could explain the high permeation of compounds
presenting asymmetric distribution of polar regions. Because
the lipids constituting the SC present localized hydrophilic and
hydrophobic regions as well, it could be reasonable to conclude
that the presence of localized hydrophobic and donor groups
may enhance the permeation of compounds through the SC.

The descriptors associated to the class III (high membrane
retention) in the loading plot (Figure 6) are those related to
dipolarity/dipolarizability (V-DRY) and hydrophobicity (V-
MLP). The presence of nondirectional electrostatic interactions
and hydrophobic interactions between permeants and the
artificial membrane constituents, thus, positively contribute to
membrane retention. The MLPho molecular fields of progest-
erone calculated at 0.5 potential level are shown in Figure 9.
Progesterone is a molecule with a high membrane retention (R
) 73.5%), and the existence of a large hydrophobic region is
well shown by the MLPho isopotential surface. The positive
contribution of hydrophobicity to skin permeation has been
shown in many predictive models,8,9 while the effect of
dipolarity/dipolarizability has not been studied in detail and has
not revealed particular influence on skin permeation.13

Use of Discriminant In Silico PAMPA-Skin Filter. The in
silico PAMPA-skin filter allows to predict relatively well which
class (based on membrane retention (R) and permeation
parameterCA(t)/CD(0)) a new compound belongs by the simple
determination of its 3D solvatochromic descriptors. This
information could guide the selection of new compounds to be
tested through the PAMPA-skin artificial membrane. Reservoir
properties of SC have been demonstrated to exist,21 and, thus,
the investigation of these functions is essential in dermatologic
and cosmetic studies.22 For example, dermatological and
cosmetic applications require compounds to be absorbed and
to remain at a certain extent in skin layers. The membrane
retention of compounds determined in PAMPA-skin artificial
membrane seems to reflect the affinity of compounds with SC1

Figure 7. MHBP molecular fields of hydrocortisone calculated at 0.05
potential level. Volumes of acceptor H-bonds (V-MHBPac) and donor
H-bonds (V-MHBPdo) regions are represented, respectively, in green
and in blue.

Figure 8. MHBP and MLPho molecular fields of 5-phenylvaleric acid
calculated respectively at 0.05 and at 0.5 potential level. Volume of
acceptor H-bonds (V-MHBPac) is represented in green, volume of donor
H-bonds (V-MHBPdo) is represented in blue, and the volume of
hydrophobic regions (V-MLPho) is represented in yellow.

Figure 9. MLPho molecular fields of progesterone calculated at 0.5
potential level. The volume of hydrophobic regions (V-MLPho) is
represented in yellow.
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and, as a consequence, their potential to get trapped in it. Thus,
the prediction of a high membrane retention (class III) for a
compound could provide interesting hints regarding the capacity
of that chemical to get accumulated in the SC, and therefore,
later it would be interesting to determine experimentally the
membrane retention of that compound in PAMPA-skin. More-
over, it has been demonstrated that compounds belonging to
classes II (high permeation) and III (high membrane retention)
are characterized by high permeation through the human skin
(log Kp > -6), while compounds from class I do not permeate
the skin very well (logKp < -6). So the use of in silico
PAMPA-skin filter may allow an estimation of the potential
penetration through human skin of an unknown chemical. It
would be interesting to enlarge the data set to further assess
the predictive capability of the model.

An application based on the discriminant in silico model is
presented below. Two chemicals used in hair dyes (yellow acid
1 and red acid 35) and two emollient agents used in cosmetics
(palmitic acid and arachidonic acid) were selected and their
molecular descriptors were calculated with the procedure
reported above. The projection of the selected compounds in
the model are shown in Figure 5. Yellow acid 1 and red acid
35 are predicted as low permeants by the discriminant model,
while palmitic acid and arachidonic acid are predicted with high
membrane retention (i.e., high affinity for SC). These results
are in agreement with qualitative experimental data (hair dyes
must preferably not penetrate the skin,23 while emollient agents
are normally trapped in the SC), and confirm the good
predictability of the model.

Conclusions

The in silico and in vitro filters presented are the building
blocks of anin comboapproach for a better prediction of skin
permeation and distribution of new chemical entities. In this
study, two 3D solvatochromic models were developed for the
prediction of compound permeation and distribution from
PAMPA-skin permeation experiments. The quantitative structure-
PAMPA-permeation model for logPe provides clear information
of the permeant structural properties responsible for the
permeation through the artificial membrane and could also be
used to estimate the permeability coefficients through human
skin (Kp). The discriminant-PLS model differentiating com-
pounds according to their experimental values of membrane
retention and permeation can be used as a fast in silico filter
that can guide the selection and the design of compounds to be
tested in permeation experiments and permit a rapid estimation
of the penetration and distribution of compounds through human
skin.

Experimental Section

Chemicals.All compounds were purchased from Sigma (division
of Fluka Chemie AG, Buchs, Switzerland). DMSO (purity grade
>99.7%) was purchased from Acros Organics (Chemie Brunschwig
AG, Basel, Switzerland). IPM (purity grade>95%), silicone oil
(DC 200), and hexane (purity grade>99.5%) were purchased from
Fluka. The buffers were prepared according to Phoebus software
(Analis, Suarlee, Belgium) at a fixed ionic strength of 20 mM.

Permeation Experiments.Experimental conditions were slightly
modified with respect to our original work1 to better optimize the
PAMPA assay for HTS applications: to have at least an unionized
fraction (fui) > 0.8 for tested compounds, only three buffer solutions
were used for acids, bases, and ionizable compounds at, respec-
tively, pH ) 2 for strong acids, pH) 6 for weak acids, weak bases,
and unionizable compounds, and pH) 12 for strong bases.

The effective permeability coefficientsPe (cm/s) were calculated
using the published equation below24

whereA is the filter area (0.3 cm2) multiplied by a nominal porosity
of 70% according to the manufacturer,t is incubation time (s),τLAG

is the steady-state time (s), that is, the time needed for the
permeant’s concentration gradient to become stabilized,VA andVD

are respectively the volumes in the acceptor and the donor wells
(0.28 cm3), CA(t) is the concentration of the compound (mol cm-3)
in the acceptor well at timet, andCD(0) is the concentration of the
compound (mol cm-3) in the donor well at time 0.R is the retention
factor defined as the mole fraction that is lost in the membrane
and in the microplates (i.e., filters and plate materials)

whereCA(t)/CD(0) represents the amount of compound that reached
the acceptor compartment after the incubation timet (for VA )
VD). Steady-state times (τLAG) to saturate the membranes in PAMPA
are short relative to the total permeation time (∼20 min with
unstirred plates)25 and for this reason they were considered
negligible in this study.

Computational Procedure.The 3D structure of selected com-
pounds was generated using Corina computer program as imple-
mented in TSAR 3.3 (Oxford Molecular Ltd., Oxford, U.K.) and
energy-optimized in vacuo (ε ) 1) with the MMFF94s force field
available in Sybyl7.2 (Tripos, Inc., U.S.A.). Molecules were built
in their neutral form, and salts were removed.

The MIFs were calculated using the MLPho, the acceptor and
donor MHBPs, and the GRID “DRY” and “H2O” fields.

The molecular lipophilicity potential (MLP) is a 3D representa-
tion of the lipophilicity encoded by all fragments in the molecule.
A log Poct value is attributed to each fragment of a molecule, and
then the overall lipophilic potential is calculated at any given point
in space around the molecule.15 Positive MLP values describe
hydrophobic parts of the molecule, whereas negative MLP values
represent hydrophilic interactions. Solvatochromic analysis of the
octanol-water logP for nonelectrolytes showed that wet octanol
has a different H-bond donor capacity than water, while its H-bond
acidity is similar to that of water.18,19 Thus, the hydrophilic
interactions described by the octanol-water partition coefficient
do not fully represent the entire capacity of solutes to perform polar
interactions. Therefore, only the MLPho was retained and the
MHBPs were to describe the polar interactions of compounds.
Indeed, MHBPs provide a description of 3D H-bonding properties
of compounds and consist in a H-bonding donor potential (MHB-
Pdon) and a H-bonding acceptor potential.16

The GRID force field is widely used for determining energetically
favorable binding sites on compounds of known structure,17 and
the interaction energies are computed between different probes and
the target molecules. Because polar interactions were already
described by MHBP, the GRID MIF generated by the interaction
with a H2O probe was only used to generate the global molecular
parameters such as molecular volume (V), surface (S), globularity
(G), and rugosity (R). However, it has been previously demonstrated
that the interactions described by the DRY probe well encode for
dipolarity/polarizability interactions (π*).26 As a consequence, the
information contained in the interaction field described by GRID-
DRY was merged with MLP and MHBP fields to build the 3D
solvatochromic-type model. The Volsurf approach was then used
to calculate molecular descriptors from 3D molecular interactions
fields.2

The selected Volsurf descriptors calculated from the molecular
interaction fields described above are summarized in Table 2.

Statistical Analysis.PLS analyses were performed with SIMCA-
P11 (Umetrics AB, Umea, Sweden). PLS is a chemometric tool
for extracting and rationalizing the information from any multi-
variate description of a system condensing the overall information

Pe ) -
2.303VD

A(t - τLAG)( VA

VA + VD
) × log[1 - ( VA + VD

VD(1 - R))CA(t)

CD(0)]
(5)

R ) 1 -
CD(t)

CD(0)
-

VA

VD
× CA(t)

CD(0)
(6)
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into two smaller matrices, namely the score plot and the loading
plot. Score plots are used to reveal the presence of clusters of objects
while loading plots are useful to discover the relation between the
original variables and the LVs. The PLS searches the linear
relationship between a matrixX (independent variable) and a matrix
Y (dependent variables). In this work, the logPe was used as
dependent variable (Y) in the PLS model, while for the discriminant-
analysis DA-PLS model three classes were considered as dependent
variables (Y) according to experimental values of membrane
retention and permeation (see Results and Discussion for clas-
sification of permeants) using the following binary digit representa-
tion: for class (I), 1;0;0; for class (II), 0;1;0; and finally for class
(III), 0;0;1. The “leave-one-out” cross-validation procedure was used
to evaluate the predictive ability of the PLS models. The method
builds reduced models and uses them to predict theY-variables of
the excluded objects.
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Table 2. Molecular Fields and Related Molecular Descriptors
Calculated by VolSurf Program Used in the Study

molecular field code description

GRIDH2O V molecular volume
GRIDH2O S molecular surface
GRIDH2O R ratio volume/surface
GRIDH2O G molecular globularity
GRIDDRY V-DRY volumes of dipolarity/polarizability regionsa

GRIDDRY I-DRY dipolarity/polarizability integy momentsa

MLPho V-MLPho volumes of hydrophobic regionsa

MLPho I-MLP hydrophobic integy momentsa

MHBPac V-MHBPac volumes of H-bond acceptor regionsa

MHBPac I-MHBPac H-bond acceptor integy momentsa

MHBPdo V-MHBPdo volumes of H-bond donor regionsa

MHBPdo I-MHBPdo H-bond donor integy momentsa

a Calculated at eight energy levels.
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